A note on the minimal nonnegative solution of a nonsymmetric algebraic Riccati equation

نویسنده

  • Chun-Hua Guo
چکیده

For the nonsymmetric algebraic Riccati equation for which the four coefficient matrices form an M -matrix, the solution of practical interest is often the minimal nonnegative solution. In this note we prove that the minimal nonnegative solution is positive when the M -matrix is irreducible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Solution of a Nonsymmetric Algebraic Riccati Equation

We study the nonsymmetric algebraic Riccati equation whose four coefficient matrices are the blocks of a nonsingular M -matrix or an irreducible singular M -matrix M . The solution of practical interest is the minimal nonnegative solution. We show that Newton’s method with zero initial guess can be used to find this solution without any further assumptions. We also present a qualitative perturb...

متن کامل

Nonsymmetric Algebraic Riccati Equations and Wiener-Hopf Factorization for M-Matrices

We consider the nonsymmetric algebraic Riccati equation for which the four coefficient matrices form an M -matrix. Nonsymmetric algebraic Riccati equations of this type appear in applied probability and transport theory. The minimal nonnegative solution of these equations can be found by Newton’s method and basic fixed-point iterations. The study of these equations is also closely related to th...

متن کامل

On the Doubling Algorithm for a (Shifted) Nonsymmetric Algebraic Riccati Equation

Nonsymmetric algebraic Riccati equations for which the four coefficient matrices form an irreducible M -matrix M are considered. The emphasis is on the case where M is an irreducible singular M -matrix, which arises in the study of Markov models. The doubling algorithm is considered for finding the minimal nonnegative solution, the one of practical interest. The algorithm has been recently stud...

متن کامل

A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation

In this paper we propose a structure-preserving doubling algorithm (SDA) for computing the minimal nonnegative solutions to the nonsymmetric algebraic Riccati equation (NARE) based on the techniques developed in the symmetric cases. This method allows the simultaneous approximation of the minimal nonnegative solutions of the NARE and its dual equation, only requires the solutions of two linear ...

متن کامل

Efficient methods for solving a nonsymmetric algebraic Riccati equation arising in stochastic fluid models

We consider the nonsymmetric algebraic Riccati equation XM12X + XM11 + M22X + M21 = 0, where M11,M12,M21,M22 are real matrices of sizes n × n, n × m,m × n, m × m, respectively, and M = [Mij ]i,j=1 is an irreducible singular M matrix with zero row sums. The equation plays an important role in the study of stochastic fluid models, where the matrix −M is the generator of a Markov chain. The soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002